Конструкция и принцип работы панели ЖК-монитора

Жидкие кристаллы и управление ими

Принято выделять три агрегатные состояния вещества — твердое, жидкое и газообразное. Но некоторые органические вещества способны при плавлении в определенной фазе проявлять свойства, присущие как кристаллам, так и жидкостям. Приобретая текучесть, свойственную жидкостям, они в этой фазе не теряют упорядоченности молекул, свойственной твердым кристаллам. Эту фазу вполне можно назвать четвертым агрегатным состоянием. Правда, не следует забывать, что имеют ее только некоторые вещества и только в определенном диапазоне температур.

Пространственная ориентация молекул ЖК в так называемом положении отдыха называется порядком жидких кристаллов. Согласно классификации Фриделя, различают три основные категории порядка ЖК: смектический, нематический и холестерический (см. рис. 1).


Рис. 1. Виды порядка жидких кристаллов

Смектические ЖК наиболее упорядочены и ближе по структуре к обычным твердым кристаллам. У них, кроме простой взаимной ориентации молекул, присутствует еще и деление их на плоскости.

Направление преимущественной ориентации длинных осей молекул в жидких кристаллах обозначается вектором единичной длины, называемым директором.

Основной интерес представляют материалы с нематическим порядком, они применяются в современных жидкокристаллических панелях всех типов (TN, IPS и VA). В нематиках нормальным состоянием является положение молекул с упорядоченной по всему объему ориентацией молекул, свойственной кристаллам, но с хаотическим положением их центров тяжести, свойственным жидкостям. Молекулы в них сориентированы относительно параллельно, а вдоль оси директора смещены на различные расстояния.

Жидкие кристаллы с холестерическим порядком по структуре напоминают нематики, разбитые на слои. Молекулы в каждом последующем слое повернуты относительно предыдущего на некоторый небольшой угол и директор плавно закручивается по спирали. Эта слоистая природа, образуемая оптической активностью молекул, и является основным признаком холестерического порядка. Холестерики иногда называют «скрученными нематиками».

Граница между нематическим и холестерическим порядками является в некоторой степени условной. Холестерический порядок можно получить не только у холестерического материала в чистом виде, но и при помощи добавления к нематическому материалу специальных добавок с содержанием хиральных (оптически активных) молекул. Такие молекулы содержат асимметрический атом углерода и, в отличие от молекул нематиков, являются зеркально-несимметричными.

Порядок в жидких кристаллах определяется междумолекулярными силами, которые создают упругость ЖК материала. Да, здесь можно говорить именно об упругих свойствах, хотя природа их отлична от упругих свойств обычных кристаллов, так как жидкие кристаллы все же обладают текучестью. В нормальном (или основном) состоянии молекулы стремятся вернуться в свое «положение отдыха», например, в нематическом материале — в положение с одинаковой ориентацией директора.

Упругость ЖК меньше упругости обычных кристаллов на несколько порядков и дает совершенно уникальную возможность управлять их положением при помощи внешних воздействий. Таким воздействием может служить, к примеру, электрическое поле.

Теперь подробней о том, каким образом это поле может влиять на ориентацию молекул.

Возьмем образец, состоящий из двух стеклянных пластин, пространство между которыми заполнено нематическим материалом. Расстояние между верхней и нижней пластиной и, соответственно, толщина слоя жидких кристаллов составляет несколько микрон. Для задания нужной ориентации директора молекул в материале применяется специальная обработка поверхности подложек. Для этого на поверхность наносится тонкий слой прозрачного полимера, после чего специальной протиркой (rubbing) поверхности придается рельеф — тончайшие бороздки в одном направлении. Вытянутые молекулы кристаллов в слое, непосредственно соприкасающемся с поверхностью, ориентируются вдоль рельефа. Межмолекулярные силы заставляют все остальные молекулы принимать такую же ориентацию.

Упорядоченное расположение молекул жидких кристаллов определяет анизотропию их некоторых физических свойств (напомню, анизотропией называется зависимость свойств среды от направления в пространстве). Жидкости с их хаотичным расположением молекул являются изотропными. А вот жидкие кристаллы уже обладают анизотропией, что является важным качеством, позволяющим влиять на характеристики проходящего через них света.

Для управления положением молекул используется анизотропия диэлектрической проницаемости. Она представляет собой разность

Δε = ε|| + ε 
где ε|| — диэлектрическая проницаемость в направлении, параллельном вектору директора, ε — диэлектрическая проницаемость в направлении, перпендикулярном вектору директора. Значение Δε может быть как положительным, так и отрицательным.

Возьмем образец, состоящий из двух стеклянных пластин с расстоянием между пластинами в несколько микрон, заполненный нематическим материалом и запечатанный. Для задания нужной ориентации директора молекул в материале применяется специальная обработка поверхности подложек, для этого на поверхность наносится тонкий слой прозрачного полимера, после чего специальной протиркой поверхности придается рельеф — тончайшие бороздки в одном направлении. Вытянутые молекулы кристаллов в слое, непосредственно соприкасающемся с поверхностью, ориентируются вдоль рельефа, межмолекулярные силы заставляют все остальные молекулы принимать такую же ориентацию. Если создать в образце электрическое поле, энергия жидких кристаллов в этом поле будет зависеть от положения молекул относительно направления поля. В случае, если положение молекул не соответствует минимальной энергии, произойдет их поворот на соответствующий угол. В материале с положительным значением диэлектрической проницаемости (положительной диэлектрической анизотропией) молекулы будут стремиться повернуться вдоль направления электрического поля, в материале с отрицательной диэлектрической анизотропией — поперек направления поля. Угол поворота, соответственно, будет зависеть от приложенного напряжения.

Пусть материал в образце имеет положительную диэлектрическую анизотропию, направление электрического поля перпендикулярно исходной ориентации молекул (рис.2). При подаче напряжения молекулы будут стремиться повернуться вдоль поля. Но они изначально сориентированы по рельефу внутренних поверхностей образца, созданных протиркой и связаны с ними довольно значительным сцеплением. Как следствие, при изменении ориентации директора будут возникать крутящие моменты обратного направления. Пока поле достаточно слабое, силы упругости удерживают молекулы в неизменном положении. При увеличении напряжения, начиная с некоторого значения Ec, ориентационные силы электрического поля превышают силы упругости, и начинает происходить поворот молекул. Эта переориентация под воздействием поля носит название перехода Фредерикса. Переход Фредерикса является фундаментальным для организации управления жидкими кристаллами, на нем основан принцип работы всех ЖК-панелей.


Рис. 2. Переход Фредерикса для молекул ЖК с положительной диэлектрической анизотропией

Образуется работоспособный механизм:

  • с одной стороны, электрическое поле будет заставлять молекулы жидких кристаллов поворачиваться на нужный угол (в зависимости от значения приложенного напряжения);
  • с другой стороны, упругие силы, вызванные межмолекулярными связями, будут стремиться вернуть исходную ориентацию директора при сбросе напряжения.

Если исходная ориентация директора и направления электрического поля не строго перпендикулярны, то пороговое значение поля Ec снижается, благодаря чему становится возможным воздействовать на положение молекул значительно меньшим полем.

В этом месте придется немного отвлечься от жидких кристаллов, для того, чтобы пояснить понятия «поляризация света» и «плоскость поляризации» — без них дальнейшее изложение будет невозможно.

Свет можно представить, как поперечную электромагнитную волну, электрическая и магнитная составляющие которой колеблются во взаимно перпендикулярных плоскостях (рис.3).


Рис. 3. Электромагнитная волна

Далее для простоты будет упоминаться только направление вектора E, поскольку направление вектора H однозначно им определяется.

Естественный свет (называемый также естественно поляризованным или неполяризованным) содержит колебания вектора E, равновероятные во всех направлениях, перпендикулярных вектору k (рис.4).


Рис. 4. Направление колебания вектора E в естественном и поляризованном свете

Частично поляризованный свет имеет преимущественное направление колебания вектора E. У частично поляризованного света в поле световой волны амплитуда проекции Е на одно из взаимно перпендикулярных направлений всегда больше, чем на другое. Отношение между этими амплитудами определяет степень поляризации.

Линейно поляризованный свет — это свет, имеющий единое направление вектора E для всех волн. Понятие линейно поляризованного света является абстрактным. На практике, говоря о линейно поляризованном свете, обычно имеют в виду частично поляризованный свет с высокой степенью поляризации.

Плоскость, в которой лежат вектор E и вектор направления волны k, называется плоскостью поляризации.

Теперь вернемся к ЖК.

Вторым после диэлектрической анизотропии важнейшим физическим свойством жидких кристаллов, используемым для управления световым потоком через них, является оптическая анизотропия. Жидкие кристаллы имеют различные значения коэффициента преломления света для параллельного и перпендикулярного директору направления распространения. То есть, скорость распространения светового луча параллельно или перпендикулярно директору будет различной — при более высоком коэффициенте она, как известно, будет ниже. Оптическая анизотропия или анизотропия коэффициента преломления есть разность между двумя коэффициентами:

Δn n|| + n
где n|| — коэффициент преломления для плоскости поляризации, параллельной директору; n — коэффициент преломления для плоскости поляризации, перпендикулярной директору.

Присутствие в материале двух различных значений для n|| и n вызывает эффект двойного лучепреломления. Когда свет попадает в двулучепреломляющий материал, каким является нематик, происходит разбиение электрического полевого компонента световой волны на два векторных компонента — вибрирующий в «быстрой» оси и вибрирующий в «медленной» оси. Эти компоненты носят название соответственно обыкновенного (ordinary) и необыкновенного (extraordinary) лучей. Направления поляризации обыкновенного и необыкновенного лучей взаимно ортогональны. А наличие в материале «быстрой» и «медленной» осей обусловлено тем, о чем говорилось выше — различными коэффициентами преломления для лучей, распространяющихся соответственно параллельно или перпендикулярно направлению директора.

На рис.5 показано распространение волн вдоль «быстрой» и «медленной» осей. Нужно подчеркнуть, что ось в данном случае — это не фиксированная прямая, а направление плоскости, в которой происходят колебания волны.


Рис. 5. Вращение плоскости поляризации

Поскольку фазовые скорости обыкновенного и необыкновенного луча различны, разность их фаз будет меняться по мере распространения волны. Изменение разности фаз этих ортогональных компонентов вызывает изменение направления поляризации световой волны. На рисунке для наглядности сумма ортогональных компонентов представлена результирующим вектором Er. Можно видеть, что по мере распространения волны происходит вращение направления вектора Er. Таким образом, сложение волн на выходе из двулучепреломляющего материала даст волну с измененным относительно исходного направлением поляризации.

Угол поворота плоскости поляризации будет зависеть от ориентации молекул в материале.

Конструкция панели

Существует несколько технологий ЖК-панелей. Для иллюстрации конструкции в данном случае приведена TN, как наиболее распространенная (рис.6).

Все жидкокристаллические панели для мониторов являются трансмиссивными — изображение в них формируется за счет преобразования светового потока от расположенного сзади источника. Модуляция светового потока осуществляется за счет оптической активности жидких кристаллов (их способности вращать плоскость поляризации проходящего света). Реализуется это следующим образом. При прохождении через первый поляризатор свет от ламп подсветки становится линейно поляризованным. Далее он следует через слой жидких кристаллов, заключенный в пространстве между двумя стеклами. Положение молекул ЖК в каждой ячейке панели регулируется электрическим полем, создаваемым за счет подачи напряжения на электроды. От положения молекул зависит поворот плоскости поляризации проходящего света. Таким образом, за счет подачи на ячейки нужного значения напряжения происходит управление поворотом плоскости поляризации.

Для доставки напряжения к субпикселю служат вертикальные (data line) и горизонтальные (gate line) линии данных, представляющие собой металлические токопроводящие дорожки, нанесенные на внутреннюю (ближайшую к модулю подсветки) стеклянную подложку. Электрическое поле, как уже говорилось, создается напряжением на электродах — общем и пиксельном. Напряжение используется переменное, поскольку применение постоянного напряжения вызывает взаимодействие ионов с материалом электродов, нарушение упорядоченности расположения молекул ЖК-материала, и приводит к деградации ячейки. Тонкопленочный транзистор играет роль переключателя, который замыкается при выборе адреса требуемой ячейки на линии сканирования, разрешает «записать» требуемое значение напряжения и по окончании цикла сканирования вновь размыкается, позволяя сохранять заряд в течение некоторого периода времени. Зарядка происходит в течение времени Tf /n, где Tf — время вывода кадра на экран (например, при частоте обновления 60 Гц время вывода кадра составляет 1 с / 60 = 16.7 мс), n — количество строк панели (например, 1024 для панелей с физическим разрешением 1280х1024). Однако, собственной емкости жидкокристаллического материала недостаточно для сохранения заряда в интервале между циклами обновления, что должно вести к спаду напряжения и, как следствие, снижению контрастности. Поэтому, кроме транзистора, каждая ячейка оснащается запоминающим конденсатором, который также заряжается при открытии транзистора и помогает компенсировать потери напряжения до начала очередного цикла сканирования.

Вертикальные и горизонтальные линии данных при помощи подклеенных плоских гибких шлейфов соединены с управляющими микросхемами панели — драйверами, соответственно столбцовым (source driver) и строчным (gate driver), которые обрабатывают поступающий с контроллера цифровой сигнал и формируют соответствующее полученным данным напряжение для каждой ячейки.


Рис. 6. Жидкокристаллическая панель TN+Film в разрезе

После слоя жидких кристаллов расположены цветовые фильтры, нанесенные на внутреннюю поверхность стекла панели и служащие для формирования цветной картинки. Используется обычный трехцветный аддитивный синтез: цвета образуются в результате оптического смешения излучений трех базовых цветов (красного, зелёного и синего). Ячейка (пиксель) представляет собой три раздельных элемента (субпикселя), каждому из которых сопоставлен расположенный над ним цветовой фильтр красного, зеленого или синего цвета, комбинациями из 256 возможных значений тона для каждого субпикселя можно получить до 16,77 миллионов цветов пикселя.

Структура панели (металлические вертикальные и горизонтальные линии данных, тонкопленочные транзисторы) и пограничные области ячеек, где нарушена ориентация молекул, должны быть скрыты под непрозрачным материалом, чтобы избежать нежелательных оптических эффектов. Для этого применяется так называемая черная матрица (black matrix), которая напоминает тонкую сетку, заполняющую промежутки между отдельными цветовыми фильтрами. В качестве материала для черной матрицы используется хром или черные смолы.

Заключительную роль в формировании картинки играет второй поляризатор, часто называемый анализатором. Его направление поляризации смещено относительно первого на 90 градусов. Чтобы представить назначение анализатора, можно условно удалить его с поверхности подключенной панели. В этом случае мы увидим все субпиксели максимально освещенными, то есть ровную белую заливку экрана вне зависимости от выведенной на него картинки. От того, что свет стал поляризованным, и плоскость его поляризации вращается каждой ячейкой по-разному, в зависимости от приложенного к ней напряжения, для наших глаз пока ничего не изменилось. Функция анализатора как раз и состоит в отсечении нужных компонентов волн, что позволяет увидеть на выходе требуемый результат.

Теперь о том, как это отсечение нужных компонентов происходит. Возьмем для примера поляризатор с вертикальным направлением поляризации, т.е. пропускающий волны, ориентированные в вертикальной плоскости.


Рис. 7. Прохождение световой волны через поляризатор

На рис.7 показана волна, распространяющаяся в плоскости, лежащей под некоторым углом относительно вертикального направления поляризации. Вектор электрического поля падающей волны можно разложить на две взаимно перпендикулярных составляющих: параллельную оптической оси поляризатора и перпендикулярную ей. Первая составляющая, параллельная оптической оси, проходит, вторая (перпендикулярная) блокируется.

Отсюда очевидны и два крайних положения:

  • волна, распространяющаяся в строго вертикальной плоскости, будет пропускаться без изменений;
  • волна, распространяющаяся в горизонтальной плоскости, будет блокироваться, как не имеющая вертикальной составляющей.

Эти два крайних положения соответствуют полностью открытому и полностью закрытому положению ячейки. Подытожим:

  • Для максимально полной блокировки проходящего света ячейкой (субпикселем) требуется, чтобы плоскость поляризации этого света была ортогональна плоскости пропускания анализатора (направлению поляризации);
  • Для максимального пропускания света ячейкой плоскость его поляризации должна совпадать с направлением поляризации;
  • Плавно регулируя напряжение, подаваемое на электроды ячейки, можно управлять положением молекул жидких кристаллов и, как следствие, поворотом плоскости поляризации проходящего света. И тем самым изменять количество пропускаемого ячейкой света.

Так как угол поворота плоскости поляризации зависит от расстояния, пройденного светом в слое жидких кристаллов, этот слой должен иметь строго выдержанную толщину по всей панели. Для поддержания равномерности расстояния между стеклами (со всей нанесенной на них структурой) применяются специальные распорки (spacers).

Простейшим вариантом являются так называемые шариковые распорки (ball spacers). Они представляют собой прозрачные полимерные или стеклянные шарики строго определенного диаметра и наносятся на внутреннюю структуру стекла путем распыления. Соответственно, располагаются они хаотично по всей площади ячейки и их наличие отрицательно влияет на ее однородность, так как распорка служит центром для дефектной области и непосредственно возле нее молекулы ориентируются неправильно.


Рис. 8. Шариковые распорки и распорки колонного типа

Применяется и другая технология — распорки колонного типа (column spacer, photo spacer, post spacer). Располагаются такие распорки с фотографической точностью под черной матрицей (рис.8). Преимущества такой технологии очевидны: повышение контрастности за счет отсутствия световых утечек возле распорок, более точный контроль однородности зазора за счет упорядоченного расположения распорок, повышение жесткости панели и отсутствие ряби при нажиме на поверхность.

Панель TN, конструкция которой была приведена на рис.6, является самой недорогой в производстве, что определяет ее доминирование на рынке массовых мониторов. Кроме нее существует еще несколько технологий, различающихся расположением, конфигурацией и материалом электродов, ориентацией поляризаторов, используемыми ЖК-микстурами, исходной ориентацией директора в жидкокристаллическом материале и т.д. Согласно исходной ориентации директора все существующие технологии можно разделить на две группы:

1. Планарная ориентация

Сюда относятся все IPS-технологии (S-IPS, SA-SFT и др.), а также FFS (в настоящее время — AFFS), разработанная и продвигаемая компанией Boe HyDis. Молекулы выравниваются горизонтально, параллельно основанию подложек, в направлении, заданном протиркой, верхняя и нижняя подложки протерты в одном направлении. Все электроды, как пиксельные, так и общие, находятся на одной стеклянной подложке панели — внутренней, вместе с линиями данных и транзисторами. В IPS-технологиях пиксельные и общие электроды расположены параллельно, чередуясь друг с другом (рис.9). Силовые линии поля проходят горизонтально, но под некоторым углом относительно направления протирки. Поэтому при подаче напряжения молекулы, обладающие в данном случае положительной диэлектрической анизотропией, стремясь выстроиться по направлению приложенного поля, поворачиваются в той же плоскости на угол, зависящий от его (поля) напряженности. В случае FFS общий электрод расположен под пиксельным — при такой конструкции приложенное к электродам напряжение образует электрическое поле, имеющее как горизонтальную, так и вертикальную составляющие. Если для IPS в приведенных на рис.9 координатных осях поле можно охарактеризовать как Ey, то для FFS соответствующие значения будут выглядеть как Ey и Ez. Такое расположение силовых линий поля позволяет использовать ЖК-материалы как с положительной, так и с отрицательной диэлектрической анизотропией. Поворот молекул, аналогично IPS, происходит в той же плоскости по направлению горизонтальной составляющей поля, но при этом из-за меньшего количества пограничных зон поворачивается значительно большее количество молекул, что позволяет сузить ширину решетки черной матрицы и достичь более высокого отношения апертуры панели.


Рис. 9. Технологии IPS и FFS

Одним из основных плюсов технологий с планарной ориентацией директора является крайне незначительный цветовой сдвиг (color shift) палитры при изменении угла обзора. Эта стабильность объясняется конфигурацией спирали, образуемой молекулами жидкокристаллического материала под действием поля, которая в данном случае имеет симметричную форму. На рис.9 схематично показано положение ЖК-молекул при поступлении напряжения на электроды — очевидно, что максимальный угол поворота достигается в средних слоях. Такая неоднородность обусловлена тем, что, как уже говорилось, ориентация молекул в нужном направлении параллельно основанию подложек получена за счет предварительной обработки (протирки) их поверхностей. Поэтому подвижность молекул в непосредственно граничащем с подложкой слое ограничивается рельефом подложки, а последующих близлежащих слоях — межмолекулярными силами. В результате под воздействием поля молекулы образуют спираль, напоминающую форму ленты с зафиксированными в одной плоскости концами и повернутой центральной частью. Существует понятие оптического пути, зависящего от коэффициента преломления среды, в которой распространяется луч и результирующего фазового набега по направлению его следования. Световые лучи, проходящие через слой жидких кристаллов, имеют различную длину оптического пути в зависимости от угла прохождения. Симметричная форма спирали молекул позволяет получить для каждого серого уровня точное дополнение длины оптического пути в своих верхней и нижней половинках, следствием является практически полное отсутствие зависимости отображаемых оттенков от углов обзора. Благодаря такому свойству, IPS-панели используются в подавляющем большинстве мониторов, ориентированных на работу с графикой.

При прохождении световой волны направление врашения результирующего вектора (см. рис.5) частично повторяет форму изгиба спирали, образуемой молекулами. Поэтому вращение плоскости поляризации при прохождении волны через первую часть ЖК-материала происходит в одном направлении, а через вторую — в противоположном. Различное, в зависимости от приложенного напряжения, запаздывание по фазе одного из компонентов волны приводит к тому, что направление результирующего вектора Er на выходе из слоя жидких кристаллов отличается от исходного, это позволяет определенной части светового потока пройти через анализатор. Светопропускающие плоскости поляризатора и анализатора, как и во всех остальных технологиях смещены относительно друг друга на угол 90 градусов.

Во всех выпускаемых в настоящее время вариациях (S-IPS, AFFS, SA-SFT) используется 2-доменная конструкция ячейки. Для этого применяются электроды зигзагообразной формы, которые вызывают поворот молекул в двух направлениях. Первоначальные версии, обозначавшиеся как просто «IPS» и «FFS», без приставок «Super» и «Advanced», были монодоменными, поэтому имели цветовой сдвиг и меньшие углы обзора (от 140/140 по падению контрастности до 10:1 у первых IPS).

К планарной ориентации обычно причисляется и твист-ориентация (или закрученная ориентация). Выравнивание молекул вдоль основания подложек в этом случае также достигается протиркой их поверхностей, с той разницей, что направления протирки верхней и нижней подложек смещены друг относительно друга. В результате такого выравнивания в нематическом материале директор образует спираль, напоминающую холестерическую, для правильного формирования спирали в ЖК-микстурах применяются специальные добавки с содержанием хиральных молекул. Твист-ориентация используется в наиболее широко распространенной TN (или TN+Film) технологии. Описывать и иллюстрировать конструкцию TN здесь не имеет смысла, это неоднократно сделано в многочисленных материалах на аналогичные темы — можно сказать, что она хорошо известна.

2. Гомеотропная ориентация

К этой группе принадлежат MVA и PVA. Директор ориентирован перпендикулярно основанию стеклянной подложки, это достигается применением в покрытии подложки поверхностно-активных веществ. Общие и пиксельные электроды расположены на противоположных подложках, поле ориентировано вертикально. Здесь используются жидкокристаллические материалы с отрицательной диэлектрической анизотропией, поэтому приложенное напряжение вызывает поворот молекул ЖК против силовых линий поля. MVA отличается наличием микроскопических продольных выступов (protrusion) для преднаклона молекул на верхней, либо на обеих подложках, поэтому исходное вертикальное выравнивание не является полным. Молекулы, выравниваясь по этим выступам получают небольшой преднаклон, что позволяет задать для каждой области (домена) ячейки определенное направление, в котором будет происходить поворот молекул под воздействием поля. В PVA такие выступы отсутствуют и в отсутствие напряжения директор ориентирован строго перпендикулярно поверхности, а пиксельный и общий электроды смещены друг относительно друга так, что создаваемое поле не строго вертикально, а содержит наклонный компонент (рис.10).


Рис. 10. Технологии MVA и PVA

К технологиям с гомеотропной ориентацией директора относится также ASV, разработанная компанией Sharp. В пределах субпикселя здесь располагается несколько пиксельных электродов, имеющих форму квадратов со скругленными краями. Основные принципы те же: общий электрод расположен на противоположной подложке, молекулы в отсутствие поля ориентированы вертикально, используются жидкокристаллические материалы с отрицательной диэлектрической анизотропией. Создаваемое поле имеет выраженный наклонный компонент и молекулы, поворачиваясь против направления поля, создают структуру, направление директора в которой напоминает форму зонтика с центром в середине пиксельного электрода.

Существует также деление ЖК-модулей по типам в зависимости от состояния ячеек в отсутствие напряжения. Нормально белыми (normally white) называются панели, у которых при нулевом напряжении на ячейках они полностью открыты — соответственно, на экране воспроизводится белый цвет. Нормально белыми являются все панели, изготовленные по технологии TN. Панели, блокирующие прохождение света при отсутствии напряжения, относятся к нормально черным (normally black), к этому типу принадлежат все остальные технологии.

Модуль подсветки

...на базе флюоресцентных ламп

Сквозь тело панели (поляризаторы, электроды, цветофильтры и пр.) проходит лишь незначительная часть изначального светового потока от ламп подсветки, не более 3%. Поэтому собственная яркость модуля подсветки должна быть довольно значительной — как правило, применяемые лампы имеют яркость свыше 30000 кд/м2.


Через ЖК-панель проходит около 3% светового потока

Для подсветки применяются CCFL — флуоресцентные лампы с холодным катодом (без нитей накала катодов). CCFL-лампа представляет собой запечатанную стеклянную тубу, наполненную инертным газом с небольшой примесью ртути (рис.11). Катоды в данном случае являются равноправными электродами, так как для питания используется переменный ток. В сравнении с лампами с накаливаемым (горячим) катодом, электроды у CCFL имеют другое строение и больший размер. Рабочая температура катода существенно отличается: 80-150oC против приблизительно 900oC у ламп с горячим катодом, при близкой температуре самой лампы — 30-75oC и 40oC соответственно. Рабочее напряжение для CCFL составляет 600-900 В, пусковое напряжение — 900-1600 В (цифры достаточно условные, так как спектр применяемых ламп очень широк). Образование света происходит при ионизации газа, а необходимым условием ее возникновения в лампе с холодным катодом является высокое напряжение. Поэтому для запуска такой лампы требуется на несколько сотен микросекунд подать на электроды напряжение, значительно превышающее рабочее. Приложенное высокое переменное напряжение вызывает ионизацию газа и пробой зазора между электродами, возникает разряд.

Пробой разрядного промежутка происходит по следующим причинам. В обычных условиях наполняющий лампу газ является диэлектриком. При появлении электрического поля небольшое количество ионов и электронов, всегда присутствующее в объеме газа, приходит в движение. Если подать на электроды достаточно высокое напряжение, электрическое поле сообщает ионам настолько высокую скорость, что при столкновении с нейтральными молекулами происходит выбивание из них электронов и образование ионов. Вновь образовавшиеся электроны и ионы, двигаясь под воздействием поля, также вступают в процесс ионизации, процесс принимает лавинообразный характер. После того, как ионы начинают получать достаточную энергию, чтобы выбивать электроны ударами о катод, возникает самостоятельный разряд. В отличие от ламп с горячим катодом, где разряд является дуговым, тип разряда в CCFL — тлеющий.


Рис. 11. Устройство CCFL (флюоресцентная лампа с холодным катодом)

Поддержание разряда происходит за счет так называемого катодного падения потенциала. Основная часть падения потенциала (напряжения) в разряде приходится на прикатодную область. Ионы, пробегая этот промежуток с высокой разностью потенциалов, приобретают большую кинетическую энергию, достаточную для выбивания электронов из катода. Выбитые электроны за счет той же разности потенциалов ускоряются обратно в разряд, производя там новые пары ионов и электронов. Ионы от этих пар возвращаются к катоду, ускоряются падением напряжения между разрядом и катодом, и снова выбивают электроны.

Энергия электрического тока вызывает переход находящейся в лампе ртути из жидкого состояния в газообразное. При столкновении электронов с атомами ртути происходит выделение энергии, вызванное возвращением атомов из нестабильного состояния в стабильное. При этом возникает интенсивное излучение в ультрафиолетовой области — доля ультрафиолета составляет около 60% общего излучения.

Видимый свет образуется за счет люминофорного покрытия, нанесенного на внутреннюю поверхность стекла. Ультрафиолетовые фотоны, выпущенные ртутью, возбуждают атомы в люминофорном покрытии, повышая уровень энергии электронов. Когда электроны возвращаются к первоначальному уровню энергии, атомы в покрытии производят энергию в виде фотонов видимого света. Люминофор является важнейшим компонентом лампы, от него зависят характеристики спектра излучения. Спектр CCFL крайне неровный, в нем присутствуют ярко выраженные узкие пики. Даже использование многослойного люминофорного покрытия (в ущерб максимальной яркости) не позволяет «обогнать» кинескопные мониторы по цветовому охвату. Поэтому при производстве панели для достижения приемлемого цветового охвата необходим еще и точный подбор цветовых фильтров, полосы пропускания которых должны максимально соответствовать пикам спектра излучения ламп.


Спектр модуля подсветки на базе CCFL.
Иллюстрация построена на базе изображения из документа «LCD2180WG.LEDTechPaper».

Максимальный цветовой охват в идеале могла бы обеспечить комбинация монохроматических источников основных цветов и качественных цветофильтров. На роль «квазимонохроматических» источников света могут претендовать так называемые лазерные светодиоды, но технология производства пока не обеспечивает рентабельность их применения в модулях подсветки. Поэтому на данный момент луший цветовой охват позволяют достичь модули подсветки на основе RGB-пакетов светодиодов (см. ниже).

Для формирования напряжения в несколько сотен вольт, необходимого для работы ламп, используются специальные преобразователи — инверторы. Регулировка яркости CCFL осуществляется двумя способами. Первый заключается в изменении тока разряда в лампе. Значение тока в разряде составляет 3-8 мА, значительная часть ламп имеет еще более узкий диапазон. При меньшем токе страдает равномерность свечения, при большем — существенно сокращается срок службы лампы. Недостаток этого способа регулировки состоит в том, что он позволяет изменять яркость в очень небольшом диапазоне, существенное ее снижение при этом невозможно. Поэтому мониторы с такой регулировкой при работе в условиях слабого внешнего освещения часто оказываются излишне яркими даже при нулевом значении яркости. При втором способе генерируется широтно-импульсная модуляция (ШИМ) питающего лампы напряжения (осуществляется управление шириной, т.е. длительностью импульса, за счет изменения ширины единичного импульса регулируется средний уровень напряжения.). В недостатки такому способу иногда приписывается появление мерцания ламп при реализации ШИМ на низкой частоте — 200 Гц и ниже, по сути же регулировка с помощью ШИМ представляет собой наиболее разумный подход, так как позволяет изменять яркость в широком диапазоне.

Для равномерного распределения света ламп применяется система из световодов, рассеивателей и призм. Вариантов организации распределения света существует множество, один из них показан на рис.12.


Рис. 12. Модуль подсветки

Решения с расположением ламп по верхней и нижней торцевым сторонам панели являются наиболее распространенными, такая компоновка позволяет значительно снизить общую толщину изделия. В 17- и 19-дюймовых модулях, как правило, устанавливается четыре лампы: две по верхней стороне и две по нижней. В торцевой части корпуса подобных панелей существуют специальные технологические отверстия, поэтому разбирать корпус для извлечения ламп не требуется (рис.13-б). Лампы при такой компоновке часто объединены в блоки из двух штук (рис. 13-а).

Другим вариантом является расположение ламп по всей площади обратной стороны модуля (рис.13-в) — такое решение применяется в многоламповых панелях с количеством ламп восемь штук и более, а также при использовании U-образных CCFL.


Рис. 13. А — блок из двух CCFL-ламп; Б — в панелях с торцевым расположением ламп для их извлечения предназначены технологические отверстия; В — модуль подсветки с расположением ламп по задней поверхности ЖК-панели

Минимальный срок службы ламп производителями панелей в настоящее время обычно указывается от сорока до пятидесяти тысяч часов (срок службы определяется как время, за которое светимость ламп снижается на 50%).

...на базе светодиодов

Помимо флюоресцентных ламп в качестве источника света могут также использоваться светодиоды (LED). Модули подсветки на базе светодиодов строятся либо на «белых» светодиодах, либо на пакетах светодиодов основных цветов (RGB-LED).


Модуль подсветки на базе пакета RGB-LED, состоящий из линейки RGBG-групп светодиодов.
Иллюстрация построена на базе изображения из документа «LCD2180WG.LEDTechPaper».

Наибольший цветовой охват дают пакеты RGB-LED.

Дело в том, что «белый» светодиод представляет собой синий светодиод с желтым люминофорным покрытием, либо ультрафиолетовый светодиод с комбинацией «красного», «зеленого» и «синего» люминофорного покрытия. Спектр «белых» светодиодов не избавлен от всех недостатков спектра флюоресцентных ламп. Кроме того, в отличие от «белых» светодиодов, пакет RGB-LED позволяет в оперативном режиме корректировать цветовую температуру подсветки за счет раздельного управления интенсивностью свечения каждой группы светодиодов основных цветов.


Спектр модуля подсветки на базе пакета RGB-LED.
Иллюстрация построена на базе изображения из документа «LCD2180WG.LEDTechPaper».

В итоге, достигаются две цели:

  • расширяется цветовой охват за счет более идеального спектра подсветки,
  • расширяются возможности цветокалибровки: к типовому методу на основе таблиц пересчета цветовых координат для пикселей изображения добавляется возможность корректировки цветового баланса задней подсветки.

Большая крутизна вольт-амперной характеристики светодиодов не позволяет плавно регулировать яркость излучения в широких диапазонах. Но поскольку прибор допускает работу в импульсном режиме, на практике для регулировки яркости светодиодов (как и для флюоресцентных ламп) чаще всего применяется метод широтно-импульсной модуляции.

05 марта 2006—26 февраля 2008
Олег Медведев, Максим Проскурня